Action of carbamazepine on epileptiform activity of the verartidine model in CA1 neurons.

نویسندگان

  • S A Otoom
  • K A Alkadhi
چکیده

The veratridine epileptiform model was utilized to assess the antiepileptic effect of Carbamazepine (CBZ) in rat hippocampal CA1 pyramidal neurons using conventional intracellular recording techniques. In the veratridine model, where brain slices are treated with veratridine (0.3 microM), a single intracellular stimulus evokes epileptiform bursting. Additionally, spontaneous epileptiform activity commonly appears on prolonged exposure to veratridine in this model. In this model, therapeutic (7-15 microM) and high (50 microM) concentrations of CBZ inhibited the evoked and spontaneous epileptiform bursting in a concentration- and voltage-dependent manner. At all concentrations tested, CBZ produced inhibition of epileptiform activity without affecting the membrane resting potential or input resistance. However, at 50 microM, the drug increased the firing threshold of neurons. These results confirm the suitability of this model for testing sodium channel-dependent antiepileptic agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective effect of minocycline on PTZ-induced epileptiform activity and alterations of the shape of action potentials in snail neurons assessed by using intracellular recordings

Introduction: Epilepsy is a neurological disorder that affects 1-2% of the world population and about 30% of patients are resistant to antiepileptic drug therapy. Therefore, new treatment alternatives are needed. In the present study, the possible neuroprotective effect of minocycline against epileptiform activity induced by pentylenetetrazole (PTZ) was assessed. Methods: Conventional intra...

متن کامل

Electrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices

Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...

متن کامل

Effect of repeated transcranial magnetic stimulation during epileptogenesis on spontaneous activity of hippocampal CA1 pyramidal neurons in rats

Introduction: Considering the antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS), the effect of rTMS applied during amygdala kindling on spontaneous activity of hippocampal CA1 pyramidal neurons was investigated. Materials and Methods: A tripolar electrode was inserted in basolateral amygdala of Male Wistar rats. After a recovery period, animals received daily kindl...

متن کامل

Effects of Memantine on the Spontaneous Firing Frequency of Hippocampal CA1 Pyramidal Neurons in Intact and Alzheimer Rat Model: An Electrophysiological Study

Introduction: Memantine (MEM) is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist clinically used for the treatment of Alzheimer disease (AD) in mild to severe conditions. The present study was conducted to investigate the effects of memantine on the spontaneous firing frequency of CA1 pyramidal neurons in rats caused by an electrical lesion of Nucleus Basalis Magnocellularis (...

متن کامل

Activity Clamp Provides Insights into Paradoxical Effects of the Anti-Seizure Drug Carbamazepine

A major challenge in experimental epilepsy research is to reconcile the effects of anti-epileptic drugs (AEDs) on individual neurons with their network-level actions. Highlighting this difficulty, it is unclear why carbamazepine (CBZ), a frontline AED with a known molecular mechanism, has been reported to increase epileptiform activity in several clinical and experimental studies. We confirmed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 885 2  شماره 

صفحات  -

تاریخ انتشار 2000